# For loop to add 1.1m to all the data of AnkleLeft.y to determine real height. #for (j in 1:(nrow(DATA))) { # DATA$AnkleLeft.y + 1.1 #} plot(DATA[patient$WALKING,]$AnkleLeft.y, type = "l", ylab = "Hoogte", col = ifelse(DATA$AnkleLeft.y > -1.1, "green", "red"), ylim = c(-1.15, -0.9) ) par(new=TRUE) plot(DATA[patient$WALKING,]$AnkleRight.y, type = "l", ylab = "Hoogte", col = ifelse(DATA$AnkleRight.y > -1.1, "orange", "purple"), ylim = c(-1.15, -0.9) ) #Calculates the mean height of AnkleLeft.y meanLine <- mean(DATA[patient$WALKING,]$AnkleLeft.y) ##-LEFT-## #Creates vector which contains the values above the mean height (1e quarter) Q1 <- c() for(i in patient$WALKING){ if (DATA[i,]$AnkleLeft.y > meanLine){ Q1 <- c(Q1, DATA[i,]$AnkleLeft.y) } } #Gives the mean value of the first quarter meanQ1 <- mean(Q1) #Creates vector which containts the values under the mean height value (3e quarter) Q3 <- c() for(i in patient$WALKING){ if(DATA[i,]$AnkleLeft.y < meanLine){ Q3 <- c(Q3, DATA[i,]$AnkleLeft.y) } } #Gives the mean value of the third quarter meanQ3 <- mean(Q3) DiffAnkleLeft <- abs(meanQ3 - meanQ1) ##-RIGHT-## #Creates vector which contains the values above the mean height (1e quarter) Q1 <- C() for(i in patient$WALKING){ if(DATA[i,]$AnkleRight.y > meanLine){ Q1 <- c(Q1, DATA[i,]$AnkleRight.y) } } #Gives the mean value of the first quarter meanQ1 <- mean(Q1) #Creates vector which contains the values above the mean height (3e quarter) Q3 <- c() for(i in patient$WALKING){ if(DATA[i,]$AnkleRight.y < meanLine){ Q3 <- c(Q3, DATA[i,]$AnkleRight.y) } } #Gives the mean value of the third quarter, And the difference meanQ3 <- mean(Q3) DiffAnkleRight <- abs(meanQ3 - meanQ1) DiffAnkleLeft DiffAnkleRight if(DiffAnkleLeft < 0.05 || DiffAnkleRight < 0.05){ print("The patient barely lift his foot up, there is a potentional falling risk") } else { print("The patient walks just fine according his ankles") } #Creates Smoothline of the left ankle SmoothAnkleLeft <- smooth.spline(DATA[patient$WALKING,]$AnkleLeft.y, spar=0.35) lines(SmoothAnkleLeft, col = "green") SmoothAnkleRight <- smooth.spline(DATA[patient$WALKING,]$AnkleRight.y, spar=0.35) lines(SmoothAnkleRight, col = "purple")