| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- # (c) Deben Oldert
- # Checks the difference between multiple movie rating from different websites
- # Load libraries
- suppressMessages(library(dplyr))
- suppressMessages(library(stringr))
- # Set global vars
- wd <- getwd()
- # Set common functions
- returnPath <- function(pth) {
- return(paste(wd, pth, sep = "/"))
- }
- # 1. IMDB
- # 2. GroupLens
- # 3. Netflix
- set_names <- c("IMDB", "GroupLens", "Netflix")
- # Loading .CSV's
- print("Prepairing IMDB...")
- imdb <- read.csv(returnPath("datasets/imdb/imdb.csv"), row.names=1)
- imdb <- select(tbl_df(imdb), title, rating, year)
- imdb <- mutate(imdb, title = paste(title, " (", year, ")", sep = ""))
- print("DONE")
- print("Prepairing GroupLens...")
- groupLens_movie <- read.csv(returnPath("datasets/groupLens/movies.csv"))
- groupLens_movie <- select(tbl_df(groupLens_movie), movieId, title)
- # Extract the year
- groupLens_movie <- mutate(groupLens_movie, year = as.integer(str_match(title, "([0-9]{4})")[,1]))
- groupLens_rating <- read.csv(returnPath("datasets/groupLens/ratings.csv"))
- groupLens_rating <- tbl_df(groupLens_rating)
- groupLens_rating <- group_by(groupLens_rating, movieId)
- groupLens_rating <- summarise(groupLens_rating, rating = mean(rating, na.rm = TRUE))
- groupLens <- merge(groupLens_movie, groupLens_rating, by = intersect(names(groupLens_movie), names(groupLens_rating)), all = TRUE)
- # Cleanup
- remove(groupLens_rating)
- remove(groupLens_movie)
- print("DONE")
- print("Prepairing Netflix...")
- # Gonna be a clusterfuck w/ 2GB data (±100 million reviews)
- netflix_movie <- read.csv(returnPath("datasets/netflix/movie_titles.csv"))
- netflix_movie <- select(tbl_df(netflix_movie), movieId, title, year)
- netflix_movie <- mutate(netflix_movie, title_frmt = paste(title, " (", year, ")", sep = ""))
- # Create new and empty dataframe for final results
- netflix <- data.frame(title_frmt = character(0), year = integer(0), rating = numeric(0))
- # We need to loop through every movieId to find its .csv file
- # Then we calculate the average rating for the movie and store it in a new data.frame
- for (i in 1:nrow(netflix_movie)) {
- row <- netflix_movie[i,]
- print(i)
- # Format the file name
- # E.G:
- # mv_0000001.csv
- # mv_0027640.csv
- csv_ <- "mv_"
- for(j in nchar(row$movieId):6){
- csv_ <- paste(csv_, "0", sep = "")
- }
- csv_ <- paste(csv_, row$movieId, ".csv", sep = "")
- # Prepend the filesystem location (working directory)
- csv_ <- paste(wd, "datasets/netflix", csv_, sep = "/")
- netflix_rating <- read.csv(csv_)
- if(is.null(netflix_rating)) { # If csv is empty => skip it
- print(paste("Empty:", csv_))
- next
- }
- netflix_rating <- tbl_df(netflix_rating)
- netflix_rating <- summarise(netflix_rating, ratings = mean(rating, na.rm = TRUE))
- # Append result to the netflix table
- netflix <- bind_rows(netflix, data.frame(title_frmt = as.character(row$title_frmt), year = as.integer(as.character(row$year)), rating = netflix_rating$ratings))
- # Cleanup
- remove(csv_)
- remove(netflix_rating)
- remove(j)
- }
- # Cleanup
- remove(netflix_movie)
- remove(row)
- remove(i)
- print("DONE")
- print("Done Loading")
- print("Working on question no. 1...")
- # Define ranges
- y = 10
- x_min <- min(min(imdb$year, na.rm = TRUE), min(groupLens$year, na.rm = TRUE), min(netflix$year, na.rm = TRUE))
- x_max <- max(max(imdb$year, na.rm = TRUE), max(groupLens$year, na.rm = TRUE), max(netflix$year, na.rm = TRUE))
- # Define colors
- color <- c("blue", "red", "green")
- imdb_year_avg <- imdb %>%
- group_by(year) %>%
- summarise(rating = mean(rating, na.rm = TRUE))
- groupLens_year_avg <- groupLens %>%
- group_by(year) %>%
- summarise(rating = mean(rating, na.rm = TRUE) * 2)
- netflix_year_avg <- netflix %>%
- group_by(year) %>%
- summarise(rating = mean(rating, na.rm = TRUE) * 2)
- # imdb => rating.x
- # groupLens => rating.y
- # netflix => rating
- yearList <- merge(imdb_year_avg, groupLens_year_avg, by = "year")
- yearList <- merge(yearList, netflix_year_avg, by = "year")
- yearList <- mutate(yearList, mean = ((rating + rating.x + rating.y) / 3))
- png(filename=returnPath("output/1.png"), height = 400, width = 900, bg = "white")
- plot(yearList$rating.x,
- type = "l",
- ylim = c(0, y),
- col = color[1],
- axes = F,
- ann = T,
- xlab = "Years",
- ylab = "Avg. rating",
- cex.lab=0.8,
- lwd=2
- )
- axis(1, at=1:length(yearList$year), labels = yearList$year, pos = 0)
- axis(2, las = 1, at = 2*0:y, pos = 1)
- lines(yearList$rating.y,
- type = "l",
- pch=23,
- lty = 2,
- col = color[2],
- lwd = 2
- )
- lines(yearList$rating,
- type = "l",
- pch=23,
- lty = 3,
- col = color[3],
- lwd = 2
- )
- # lines(yearList$mean,
- # type = "l",
- # pch=23,
- # lty = 4,
- # col = "yellow",
- # lwd = 2
- # )
- legend(1, 10, set_names, cex = 0.8, col = color, lty=1:3, lwd = 2, bty="n")
- dev.off();
- print("In what year are the ratings the highest?")
- sorted <- arrange(yearList, desc(mean))
- highest <- sorted[1,]
- print(paste("That was in:", highest$year, "Score:", highest$mean))
- # Cleanup
- remove(sorted)
- remove(highest)
- print("Working on question no. 2...")
|